

Dr. D. Y. Patil Educational Federation's

Dr. D. Y. PATIL COLLEGE

OF ENGINEERING & INNOVATION

Varale, Talegaon, Pune

OBE Philosophy & Implementation

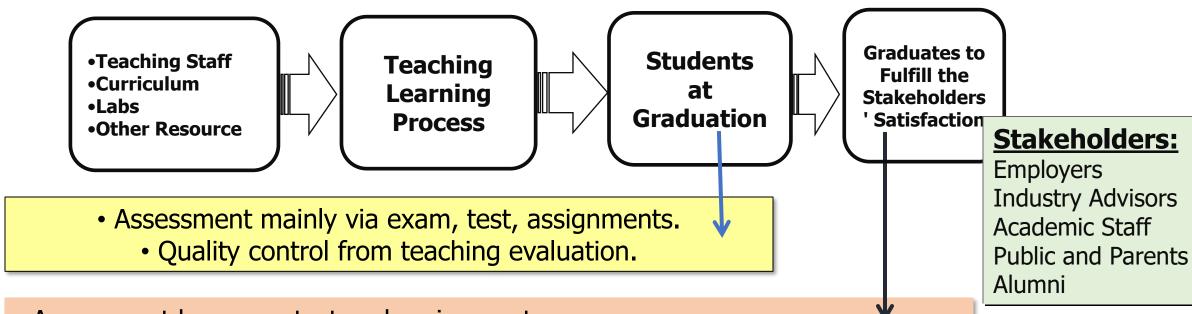
Outline

- OBE Philosophy
- OBE V/S Traditional TLP
- OBE Model Hierarchy
- OBE Implementation
- Vision and Mission of the Institute & Department
- PEO, PO, PSO and CO
- Assessment Methodology
- CO-PO Mapping
- Calculation of Attainment of POs

OBE Philosophy

It's not important
what we teach,
but
it's important
what student
learn

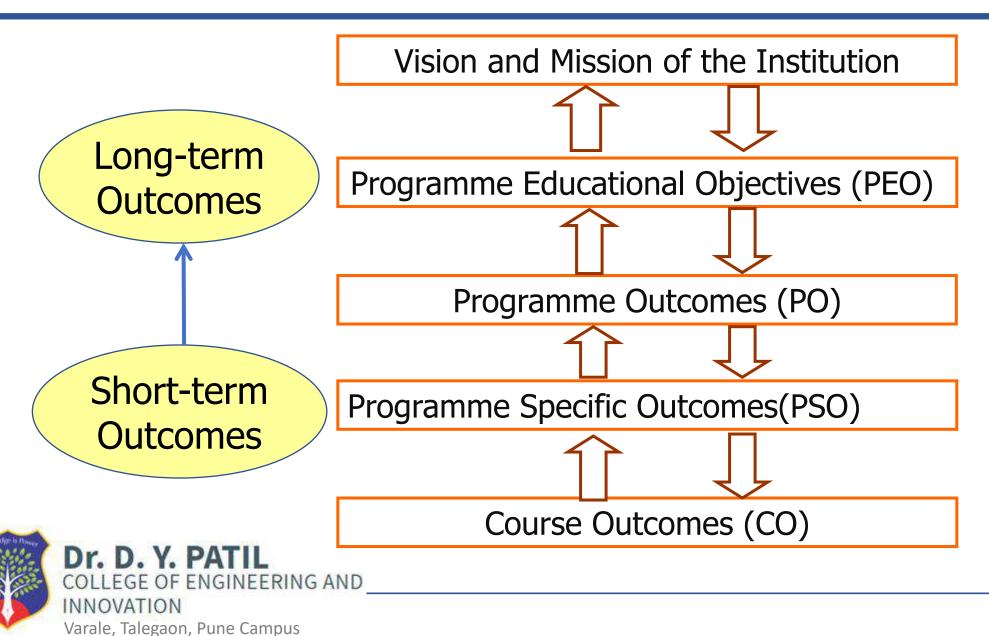
LEARNER-CENTRIC APPROACH

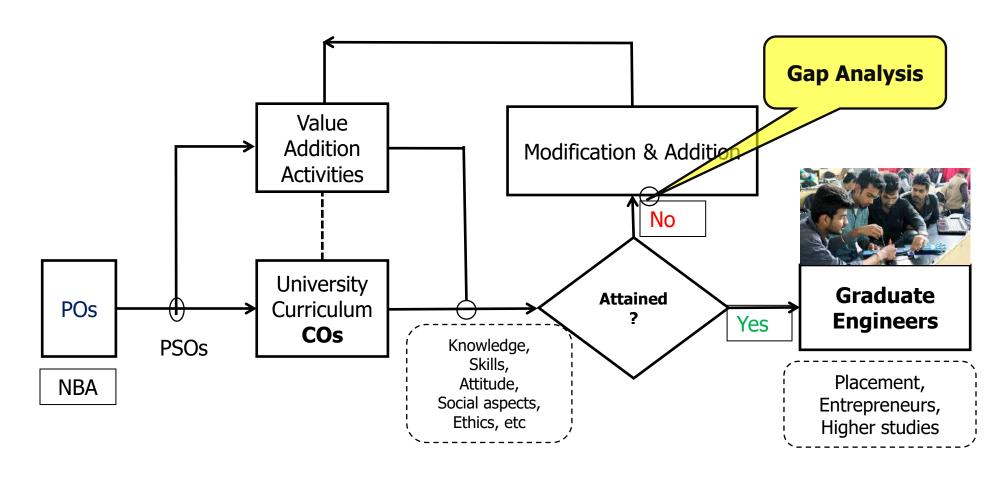

OBE Philosophy...

The model which we are using is in favor of making students demonstrate the SKILL to achieve required

Engineering Graduate Attributes.

This OBE model sets clear standards for observable, measurable **outcomes**.


OBE v/s Traditional


- Assessment by exam, test and assignments.
- Assessment of teaching staff, lecture material & flow, results and student 'capabilities' (Short & long-term outcomes), lab interview, exit survey etc.
- More 'thinking' projects, with analysis.
- Feedback from industry, alumni and other stakeholders.
- Clear continuous improvement step.

Model Hierarchy of OBE

OBE Implementation

Our Vision and Mission

Vision

To achieve excellence in quality education through value based rapidly changing technologies and create technical Human-Resource with proficiencies of accepting new challenges.

Mission

Continuously strive to impart value-based education to elevate the satisfaction level of all stakeholders.

Take dedicated efforts to create competent professionals by effective teaching learning process with passion of lifelong learning attitude. Our endeavor is to promote and support innovative research, entrepreneurship and development activities through Industry Interaction.

OBE Objectives

Objective 1:

To prepare graduates to apply their knowledge to solve real life problems

Objective 2:

Induct Professionalism, Soft-Skills, Social Awareness, and Responsibilities among the Faculty and Students

Objective 3:

Inculcate the urge for life—long learning and Professional Ethics

Objective 4:

Motivate students and faculty for vertical growth and to understand new trends in Technologies

Our Program Educational Objectives (PEOs)

PEO1: Prepare graduates to apply their Computer Engineering knowledge while framing the solutions to the real-life problems

PEO2: Inculcate ability of communication, soft skills, ethics and work in a team while demonstrating the professionalism.

PEO3:Impart life-long learning among faculty and students to adapt new trends and technologies in the field of Computer Engineering.

Graduate Attributes

- Graduate Attributes which form the student learning outcomes w. r. t. :
 - Engineering Knowledge
 - Problem Analysis
 - Design/Development of solutions
 - Investigation
 - 5. Modern tool usage
 - The Engineer and Society
 - **Environment and sustainability**
 - **Ethics**
 - Individual and Teamwork
 - 10. Communications
 - 11. Project Planning Management and Finance
 - 12. Life-Long Learning

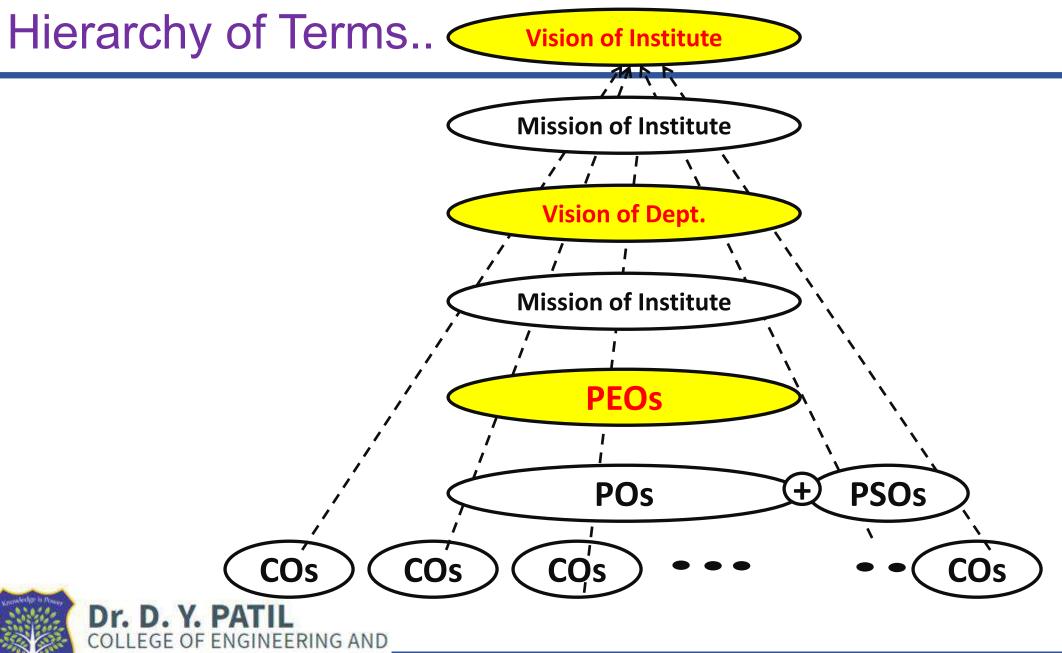
Technical

Non-**Technical**

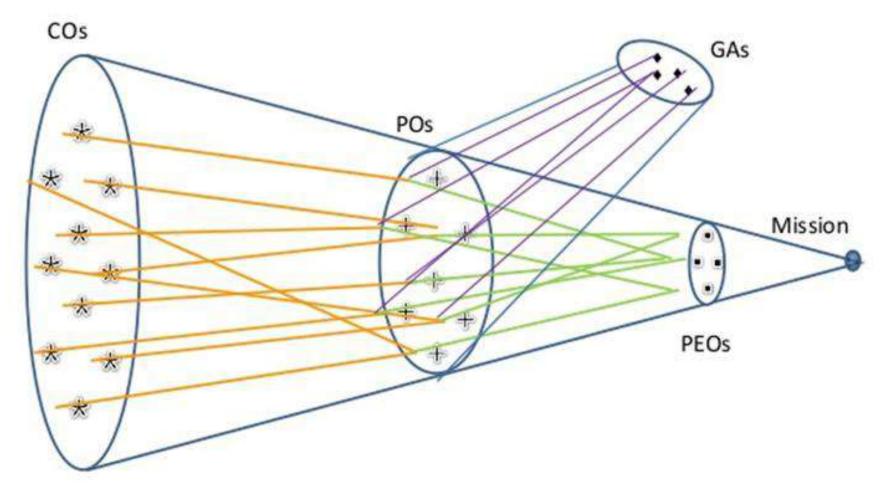
PSOs

PSOs are a statement that describes what students are expected to know and be able to do in a specialized area of discipline upon graduation from a program.

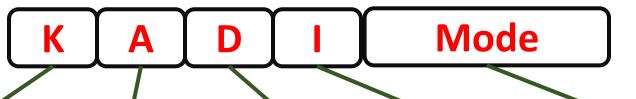
They are beyond POs. Program Curriculum and other activities during the program must help in the achievement of PSOs along with POs


PSOs.. of Department of Computer Engineering

PSO1: Enhance the ability of design and develop algorithms while studying core courses consisting of concepts of Computer Network, Databases, System Programs, Software Testing and quality assurance.


PSO2: Rigorous hand-on training to enhance the skills in emerging trends and technologies such as WSN, IoT, Machine Learning and Information Security.

PSO3: Inculcate professionalism with ethics and compassion towards humanity while working in a team.



Hierarchy of Terms..

POs

Knowledge,

Apply knowledge of mathematics, science, engineering fundamentals and specialization to the solution of complex engineering problems.

Analyze

Complex
Engineering
problem
By
Identifying,
formulating the
literature
and reaching to
the conclusion
using principles
of Science

Design

Solutions for complex problems. design systems, or processes that meet specified needs by considering safety, cultural, societal, and environment

nvestigate

Complex problems including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions

Modern

Engineering
Tools
Create, select
and apply
appropriate
techniques,
resources to the
Complex
Engineering
Activities with
Limitations

S E E T Comm

Society

Apply reasoning to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional practice

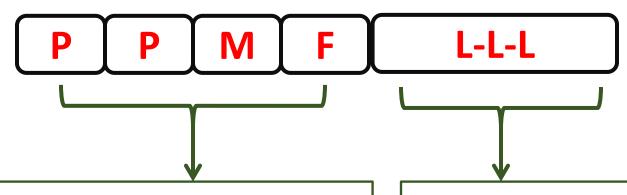
Environment

Understand the impact of the professional engineering solutions in environmental contexts, and demonstrate need of sustainable development.

Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practices why implementing solution

Team


Function
effectively
as an individual,
and
as a member or
leader in diverse
teams,
And
in
multidisciplinary
settings

Ccmmunication

Engineering
Tools
Create, select
and apply
appropriate
techniques,
resources to the
Complex
Engineering
Activities with
Limitations

POs

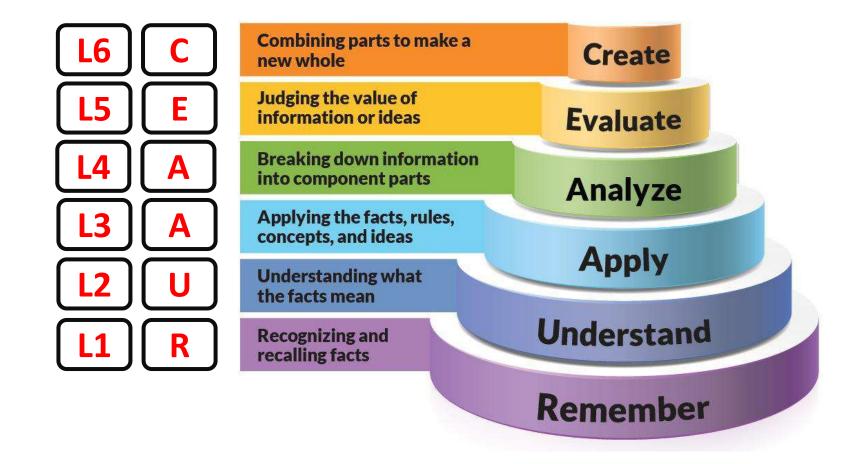
Project Planning, Management & Finance

Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team. Manage projects in multidisciplinary environments including financial management

Life - Long-Learner

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COs


Learning outcomes or COs are goals for student learning that you, as a faculty, set for your course.

They essentially answer the question "What will students learn?"

Course-level or semester-long learning outcomes are usually shared with students in the syllabus.

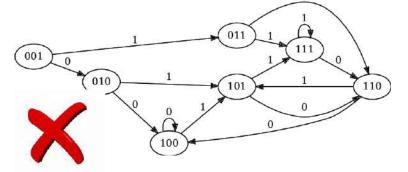
Bloom's Taxonomy

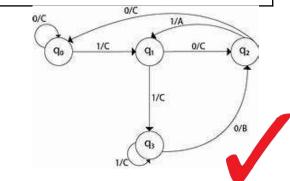
PO-CO and Bloom's Taxonomy

Туре	Pos	Pos action Verbs	Pos Blooms Levels	COs Bloom's Level(s)		
	PO1	Apply	L3			
	PO2	Identify	L2			
		Formulate	L6			
		Review	L2			
	PO3	Design	L3, L6			
		Develop	L3, L6	L1 to L4 »»» Theory		
Tachnical Ckills		Analyze	L4	Courses, L1 to L5		
Technical Skills	PO4	Interpret	L2, L3	»»» Laboratory Courses, L1to L6 »»» Mini Project and Major Project		
		Design	L6			
	PO5	Create	L6			
		Select	L1, L2, L6			
		Apply	L3			
	PO6	Apply	L3			
		Assess	L5			
	PO7	THUMB RULE If L1 Action Verbs of a CO »»» Correlates with				
Transferabl eSkills	PO8					
	PO9	anyof PO7 to PO12 »»» then assign 1 If L2 to L3 Action Verbs of a CO »»» Correlates with any				
	PO10					
	PO11	If L2 to L5 / tedoff verbs of a CO //// Coffeates with any				

Bloom's Level	Key Verbs (keywords)	Example Learning Outcome
Create	design, formulate, build, invent, create, compose, generate, derive, modify, develop.	By the end of this lesson, the student will be able to design Digital Counter to count the number of products passing on the Conveyer belt.

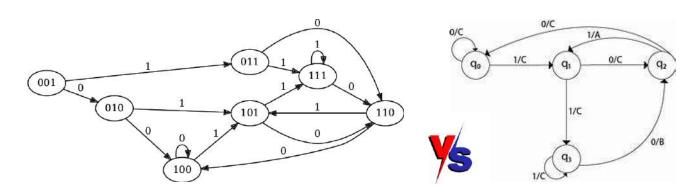
Bloom's Level

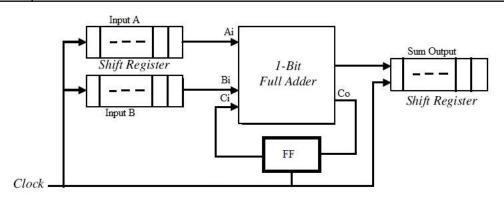

Key Verbs (keywords)


Example Learning Outcome

Evaluate

choose, support, relate, determine, defend, judge, grade, compare, contrast, argue, justify, support, convince, select, evaluate.


By the end of this lesson, the student will be able to **determine** whether use Mealy Machine Concept while designing the counter would be **more appropriate** for solving a dynamics problem.



Bloom's Level	Key Verbs (keywords)	Example Learning Outcome
Analyze	classify, break down, categorize, analyze, diagram, illustrate, criticize, simplify, associate.	By the end of this lesson, the student will be able to differentiate between Moore and Mealy Machine.

Bloom's Level	Key Verbs (keywords)	Example Learning Outcome
Apply	calculate, predict, apply, solve, illustrate, use, demonstrate, determine, model, perform, present.	By the end of this lesson, the student will be able to calculate the delay involved in getting the final output count.

Bloom's Level	Key Verbs (keywords)	Example Learning Outcome
Understand	describe, explain, paraphrase, restate, give original examples of, summarize , contrast, interpret, discuss.	By the end of this lesson, the student will be able to summarize the concept of Mealy and Moore Machine

Bloom's Level	Key Verbs (keywords)	Example Learning Outcome
Remember	list, recite, outline, define, name, match, quote, recall, identify, label, recognize.	By the end of this lesson, the student will be able to recite Newton's three laws of motion.

https://tips.uark.edu/using-blooms-taxonomy/

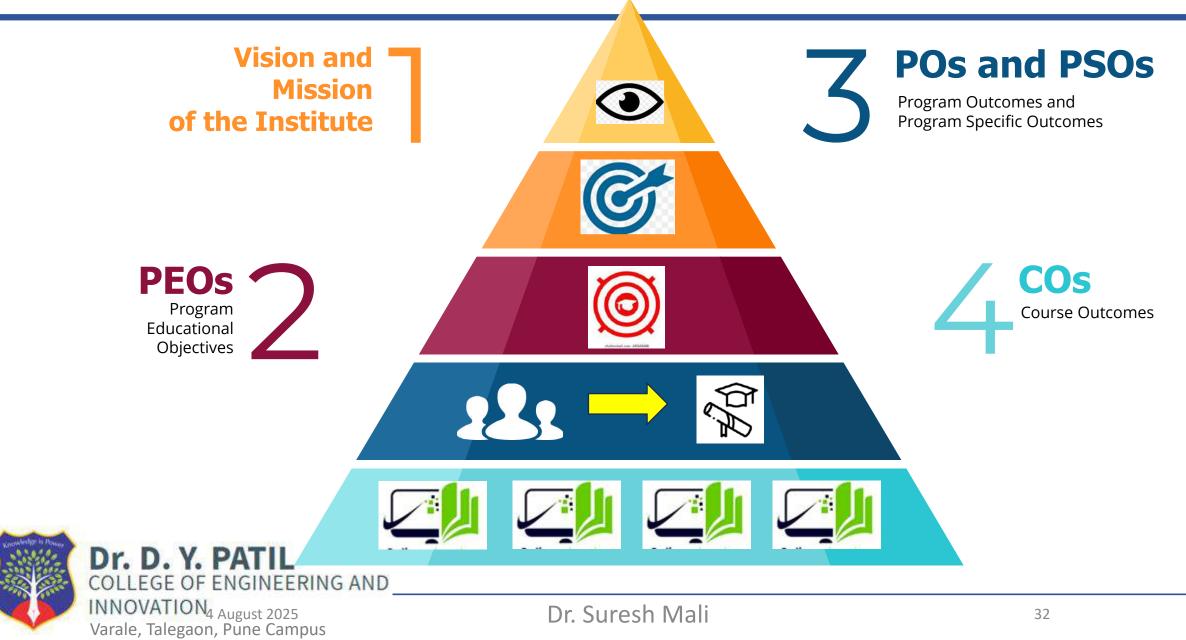
Three Main Components of Blooms Taxonomy

Setting a Clear Learning Objective aligned with Blooms Taxonomy Designing Instructional Strategies for each Cognitive Level Incorporate Assessment Methods aligned with Blooms Taxonomy

https://www.eklavvya.com/blog/blooms-taxonomy-outcome-based-education/

PO-CO and Bloom's Taxonomy

 Select action verbs for a CO from different Bloom's levels based on the importance of the particular CO for the given course.


 Stick on to single action verbs while composing COs and use for multiple action verbs if the need arises.

PO-CO and Bloom's Taxonomy

Values to CO-PO (technical Pos in particular) matrix are assigned by

- * Judging the importance of the particular CO in relation to the Pos. If the CO matches strongly with a particular PO criterion then 3 is assigned, if it matches moderately then 2 is assigned or less than 1 is assigned else marked with " " symbol.
- * If an action verb used in a CO is repeated at multiple Bloom's levels, then reconsider which Bloom's level is the best fit for that action verb.

CO-PO-PSO Attainment Calculations

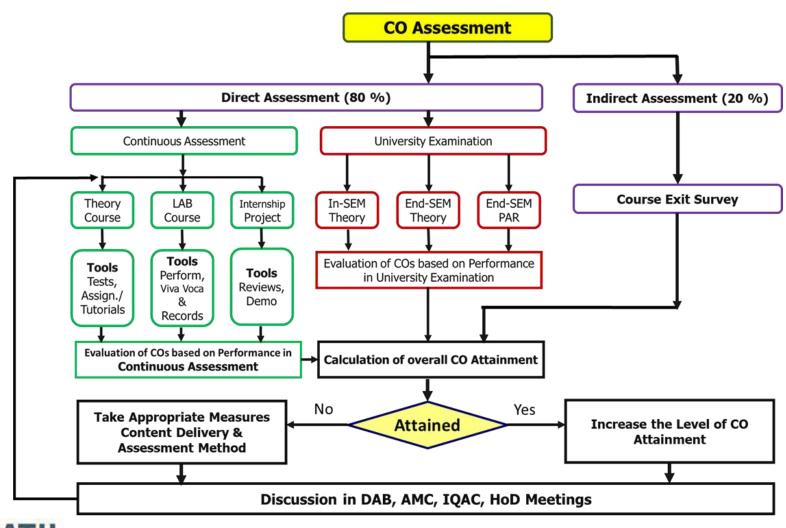

Dr. Suresh Mali

Course Outcome (CO)

Course Outcomes are narrower statements that describe what students are expected to know, and are able to do at the end of each course.

These relate to the skills, knowledge and behavior that students acquire in their progress through the course.

Types of Course Outcome (CO)

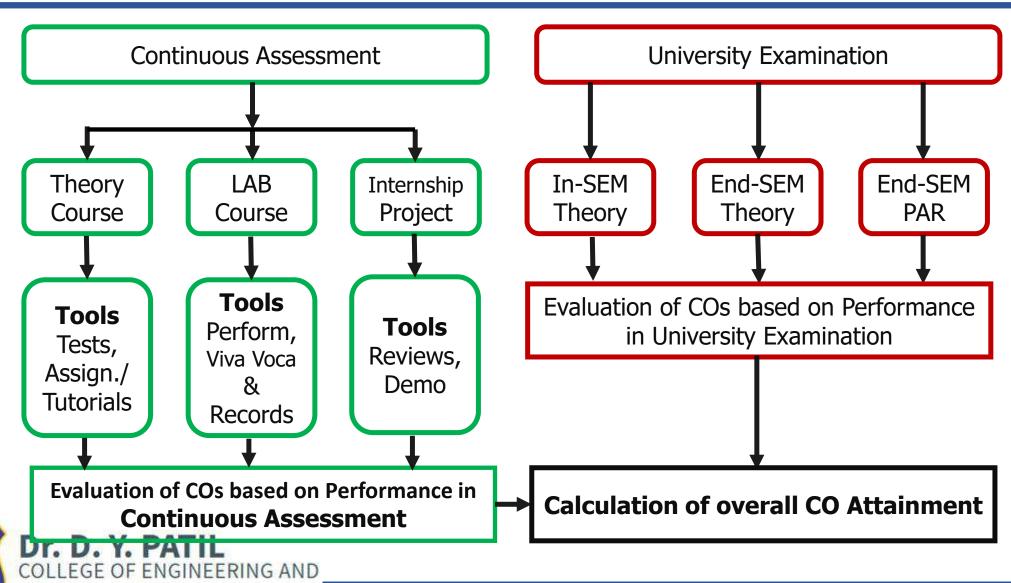


Course Outcome (CO)

Course Outcome

CO Number	On completion of this course, students will be able to:	Cognitive Level
CO1		
CO2		
CO3		
CO4		
CO5		
CO6		

CO assessment



CO Assessment Tools

Evaluation Tools	Process
	The Tests and assignments are given to the students. Tests and Assignment sheets are
Assignments & Tutorials	prepared by the faculty member with COs and levels.
University	Mid-SEM Examination is conducted by SPPU with institute level assessment to evaluate
IN-SEM Examination	the attainment of course outcomes. Each question is mapped with COs and blooms level.
Continuous Assessment &	The evaluation criteria for each experiment are based on performance, presentations,
Model Exam	viva-voce and submission of Journals. The attainment of COs is calculated through
(Laboratory Course)	continuous assessment and model practical performance.
Internship Reviews	Three reviews are conducted periodically to monitor and evaluate the progress of
Project Reviews	the project using project rubrics. Presentations and Viva-Voce is conducted at the end
	of the semester.
University	At the end of each semester, final examination is conducted by SPPU for Theory and
End SEM Examination	Laboratory courses in which all the Cos are covered in the question
	papers

Varale, Talegaon, Pune Campus

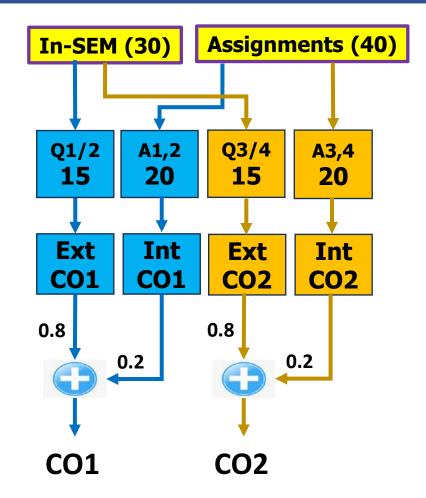
CO Assessment Tools

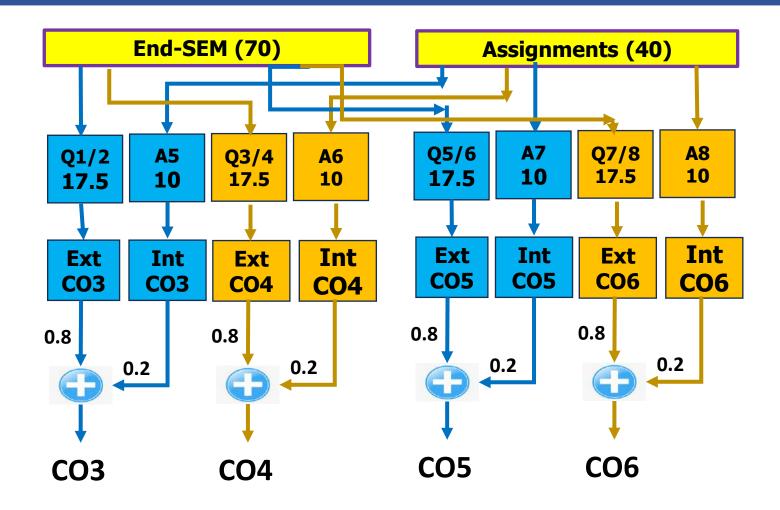
INNOVATION

Varale, Talegaon, Pune Campus

CO-PO-PSO Mapping

CO-PO-PSO MAPPING


С	0	PO1	PO2	РО3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	CO1															
2	CO2															
3	соз															
4	CO4															
5	CO5															
6	CO6															


CO – PO Mapping (Matrix)

Depending upon the Contribution of the CO, there are **Three possible CO-PO Mapping levels**

Level of Attainment	Description towards Attainment
3	3-indicates Substantial (high) mapping (high contribution towards attainment)
2	2-indicates Moderate (medium) mapping (medium contribution towards attainment)
1	1-indicates Slight (low) mapping (some contribution towards attainment)
0	0-indicates Slight (very low) mapping (absolutely no contribution towards attainment)

CO Attainment Calculations

Theory

Practical

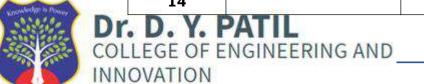
Theory Examination

In-SEM Assessment (30)

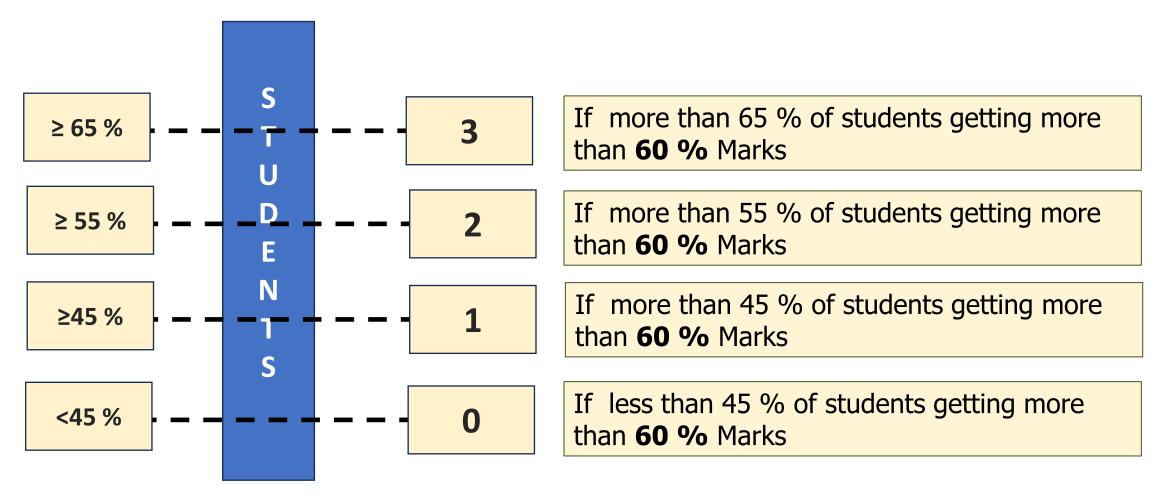
End-SEM Assessment (70) Assignments/ Tests

Continuous Assessment (80) Practical Assignments

Continuous Assessment (40-60)) Practical/Oral Examination


Term-Work Mock/Oral (25/50)

End-SEM Assessment (25/50)


CO Attainment Calculations Theory up to Mid-SEM

Roll Number N	Name of Student	Insem Mark	Q1 (15) CO1	Q3 (15) CO2	Assignment-1 (10) CO1	Assignment-2 (10) CO1	Assignment-3 (10) co2	Assignment-4 (10) Co2	CO1 total (35)	CO2 total (35)	CO1	C02
1		17	11	6	5	6	7	7	22	20	62.86	57.14
2		20	12	8	9	8	7	7	29	22	82.86	62.86
3		07	7	0	6	9	7	6	22	13	62.86	37.14
4		22	12	10	7	8	7	7	27	24	77.14	68.57
5		17	12	5	6	8	8	7	26	20	74.29	57.14
6		20	10	10	9	6	6	8	25	24	71.43	68.57
7		26	13	13	9	8	8	9	30	30	85.71	85.71
8		20	12	8	6	9	8	7	27	23	77.14	65.71
9		21	14	7	6	7	6	7	27	20	77.14	57.14
10		26	12	14	6	8	8	9	26	31	74.29	88.57
11		12	8	4	7	6	6	9	21	19	60.00	54.29
12		19	14	5	6	7	6	8	27	19	77.14	54.29
13		22	12	10	7	8	8	7	27	25	77.14	71.43
14 * D V D	ATII	18	13	5	7	9	9	9	29	23	82.86	65.71

Varale, Talegaon, Pune Campus

Attainment Levels Vs. Set Target (60 %):

CO Attainment Calculations Theory after ESE

Roll Number	Endsem Mark (70)	(17.5) CO3	(17.5) CO4	(17.5) CO5	(17.5) co6	Assignment-5 (20) CO3	Assignment-6 (20) Co4	Assignment-7 (20) CO5	Assignment-8 (20) CO6	CO3	C04	CO5	900	CO3	C04	CO5	900
1	47	11.75	11.75	11.75	11.75	7	8	8	7	18.75	19.75	19.75	18.75	68.18	71.82	71.82	68.18
2	34	8.5	8.5	8.5	8.5	7	7	7	7	15.5	15.5	15.5	15.5	56.36	56.36	56.36	56.36
3	39	9.75	9.75	9.75	9.75	6	6	6	7	15.75	15.75	15.75	16.75	57.27	57.27	57.27	60.91
4	54	13.5	13.5	13.5	13.5	5	8	7	6	18.5	21.5	20.5	19.5	67.27	78.18	74.55	70.91
5	44	11	11	11	11	7	6	7	6	18	17	18	17	65.45	61.82	65.45	61.82
6	45	11.25	11.25	11.25	11.25	6	7	6	8	17.25	18.25	17.25	19.25	62.73	66.36	62.73	70.00
7	49	12.25	12.25	12.25	12.25	8	7	7	8	20.25	19.25	19.25	20.25	73.64	70.00	70.00	73.64
8	45	11.25	11.25	11.25	11.25	8	8	7	7	19.25	19.25	18.25	18.25	70.00	70.00	66.36	66.36
9	40	10	10	10	10	6	6	7	7	16	16	17	17	58.18	58.18	61.82	61.82
10	42	10.5	10.5	10.5	10.5	5	7	8	8	15.5	17.5	18.5	18.5	56.36	63.64	67.27	67.27

PO Attainment Calculations

CO Attainment	
CO1	3
CO2	1
CO3	2
CO4	2
CO5	3
CO6	1

СО	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		3	1	3										
CO2	2	3	3	1	2										
CO3	1	2	2	2	1										
CO4	3	1	1	2	1										
COE				_											

CO-PO-PSO MAPPING

PO1 =
$$\frac{3\times3 + 1\times2 + 2\times1 + 2\times3 + 3\times2 + 1\times1}{(3+2+1+3+2+1)}$$
PO2 =
$$\frac{1\times3 + 2\times2 + 2\times1 + 3\times1}{(3+2+1+1)}$$

CO6

PO Attainment Calculations

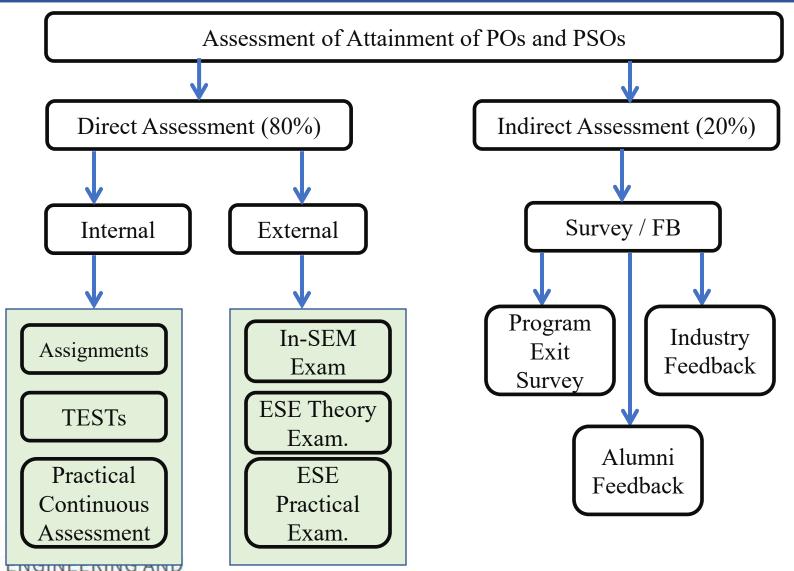
CO-PO-PSO MAPPING

CO Attainment		СО	PO1	PO2	РО3	PO4	PO5	P06	P07	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2.76	CO1	2	2	3	1	1	1	1	1	-	-	-	3	3	2	-
CO2	2.37	CO2	-	2	3	-	-	1	1	-	-	-	-	3	3	3	1
CO3	1.91	CO3	-	2	3	-	2	-	1	-	-	-	-	3	3	2	-
CO4	1.93	CO4	2	2	2	2	-	-	1	-	-	1	-	3	3	2	-
CO5	1.88	CO5	-	2	3	-	-	1	1	-	-	-	1	3	3	3	1
CO6	1.92	CO6	2	2	-	-	ı	ı	1	1	2	-	1	1	3	2	-

PO1 =
$$\frac{2.76 \times 2 + 1.93 \times 2 + 192 \times 1}{(2.76 + 2.33 + 1.91 + 1.93 + 1.88 + 1.92)}$$

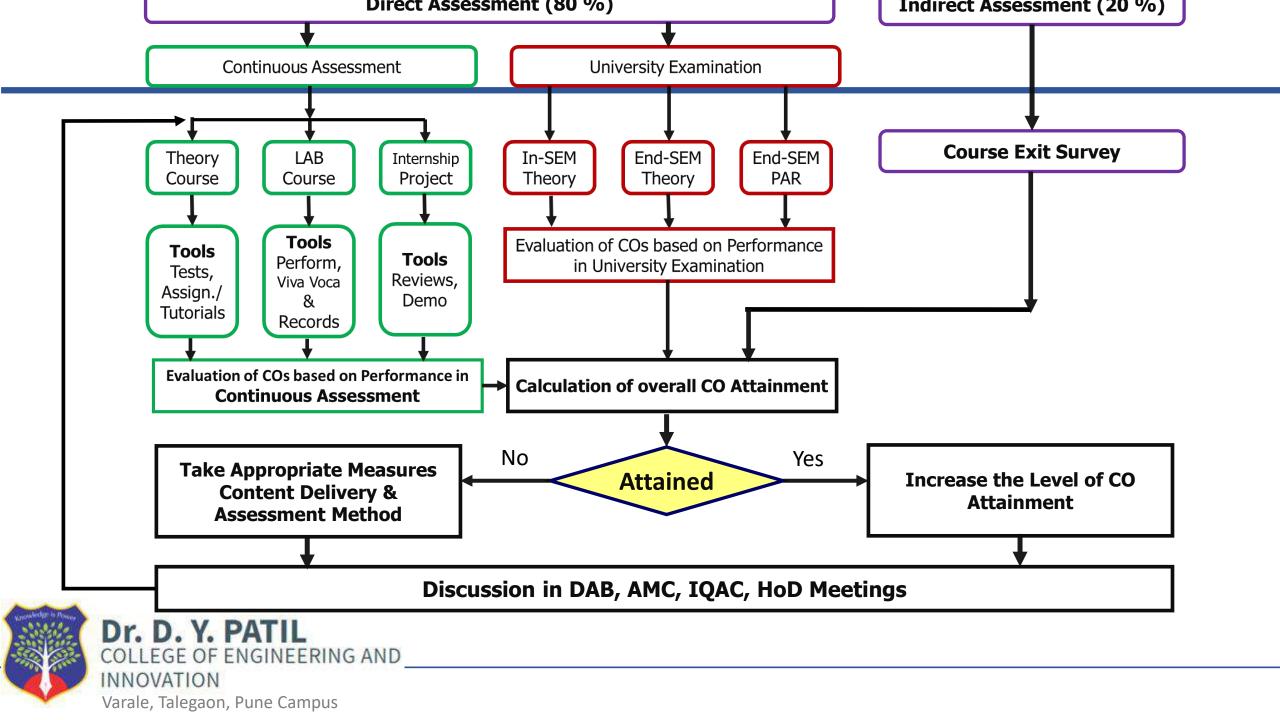
$$PO2 = \frac{1 \times 3 + 2 \times 2 + 2 \times 1 + 3 \times 1}{(1 + 2 + 2 + 3)}$$

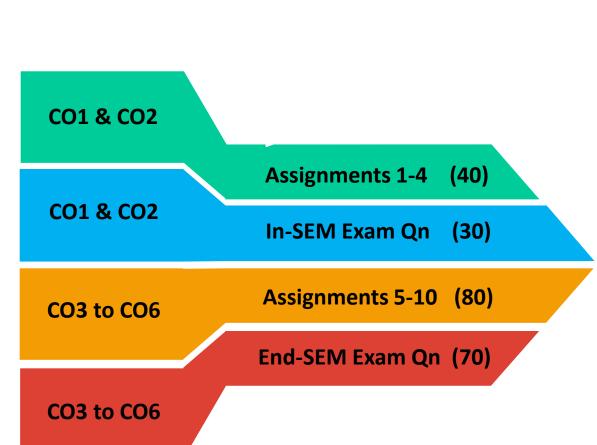
PO Attainment

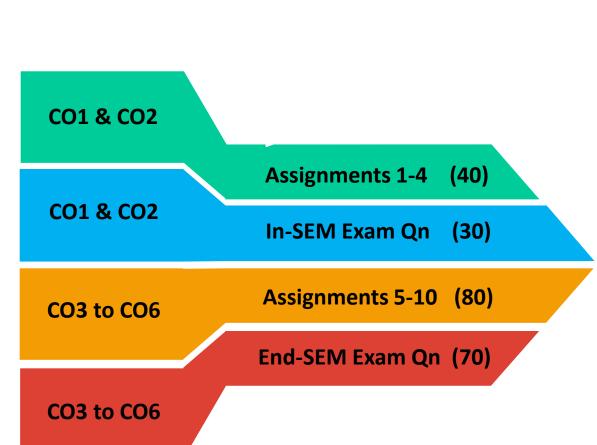

☐ Direct attainment level of a PO & PSO is determined by taking average across all courses addressing that PO and/or PSO.

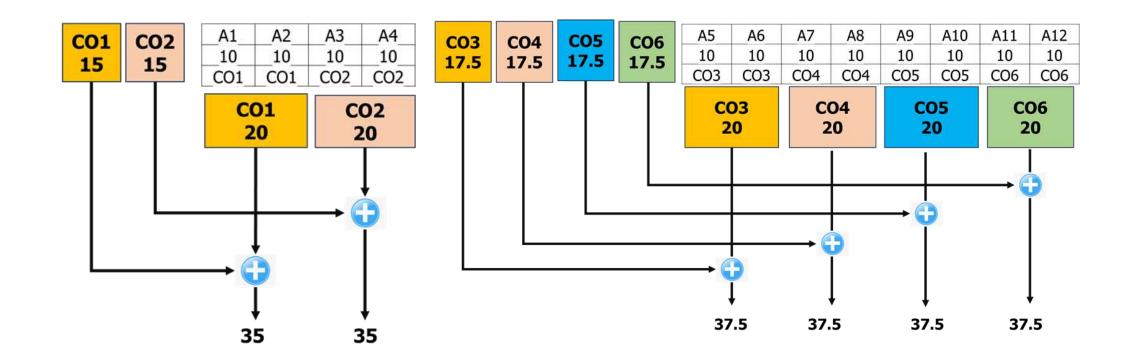
☐ Fractional numbers may be used for example 1.55.

☐ Indirect attainment level of PO & PSO is determined based on the student exit surveys, employer surveys, co-curricular activities, extracurricular activities etc.




Processes of PO-PSO Attainment


FE	SE	TE	BE	
2019-20	2020-21	2021-22	2022-23	Batch B1
2020-21	2021-22	2022-23	2023-24	Batch B2



		CO1			CO2								
Roll	A1	A2	In- Sem	ТОТ	Roll	A3	A4	In- Sem	ТОТ				
	(10)	(10)	(15)	(35)		(10)	(10)	(15)	(35)				
1	5	4	12	21	1	5	4	12	21				
2	7	5	10	22	2	7	5	10	22				
3	8	2	9	19	3	8	2	9	19				
4	9	3	8	20	4	9	3	8	20				
5	2	4	10	16	5	2	4	10	16				
6	3	8	11	22	6	3	8	11	22				
	4	9	11	24		4	9	11	24				
		9	8	17			9	8	17				
•													
•													
•													
•													
•													
100	8	7	13	28	100	8	7	13	28				

		CO1			CO2								
Roll	A1	A2	In- Sem	ТОТ	Roll	A3	A4	In- Sem	ТОТ				
	(10)	(10)	(15)	(35)		(10)	(10)	(15)	(35)				
1	5	4	12	21	1	5	4	12	21				
2	7	5	10	22	2	7	5	10	22				
3	8	2	9	19	3	8	2	9	19				
4	9	3	8	20	4	9	3	8	20				
5	2	4	10	16	5	2	4	10	16				
6	3	8	11	22	6	3	8	11	22				
	4	9	11	24		4	9	11	24				
		9	8	17			9	8	17				
•													
•													
•													
•													
•													
100	8	7	13	28	100	8	7	13	28				

